1. By solving a quadratic equation find two numbers that have a sum of 9 and a product of 20
2. By solving a quadratic equation find two numbers whose difference is 5 and whose product is 36
3. The sum of the squares of three consecutive even numbers is 56 . Find the numbers
4. The sum of a number and the reciprocal of two more than the number is 4 . Find the number.
5. The denominator of a fraction is greater than its numerator by 5 . If one is subtracted from both the denominator and the numerator then the original fraction is decreased by $\frac{5}{42}$. Prove that $\quad n^{2}+9 n-$ $22=0$ and hence determine the numerator of the original fraction.
6. A rectangle is 5 cm longer that its width. If its width is $x \mathrm{~cm}$ and its area is $14 \mathrm{~cm}^{2}$, state the dimensions of the rectangle.
7. The base of a triangle $x \mathrm{~cm}$ and its altitude is quarter the length of the base. If the triangle has an area of $12.5 \mathrm{~cm}^{2}$, state the altitude of the triangle.
8. A rectangular lawn of dimensions 30 m and 50 m is bordered on two adjacent sides by a uniform path of width $x m$. If the area of the path is $164 \mathrm{~m}^{2}$, find the width of the path.
9. A circular pool if radius r metres has a path 2 metres wide around its perimeter. If the area of the pool is four-fifths that of the total area, show that $r^{2}-16 r-16=0$, hence find the radius of the pool.
10. The side of a square is x metres. The length of a rectangle is 5 metres more than the side of the square and its width is 4 metres more than the side of the square. The area of the rectangle is $47 \mathrm{~m}^{2}$ more than the area of the squares. Determine the area of the rectangle.
11. If each side of a square is increased by 5 cm , its area is increased by $125 \mathrm{~cm}^{2}$. Find the length of the original square.
12. A rectangle has an area of $48 \mathrm{~cm}^{2}$ and a perimeter of 28 cm , find its dimensions.
13. A vendor sold n oranges at $(2 n-15)$ cents each and received $\$ 42.50$. Find the number of oranges the vendor sold.
14. A dealer bought x toys for $\$ 27$. Write an expression for the price he paid for each toy. He proposed to sell each toy at a profit of 50 cents, show that his selling price for each toy was $\$ \frac{54+x}{2 x}$. He sold 8 toys at the price and sold the remaining toys at $\$ 2$ each. Given that the dealer received $\$ 30$ altogether, form an equation and show that it reduces to $x^{2}+21 x+108=0$. Find how many toys the dealer bought.
15. A car travels a distance of 3.6 km at a speed of $(x+10)$ metres/ second in $(2 x-8)$ seconds. Find the time it took the car to complete this distance and the speed at which it travelled.
16. A cyclist travels from home to office 8 km away at $x \mathrm{~km} / \mathrm{hr}$ and returns home along the same route at speed $3 \mathrm{~km} / \mathrm{hr}$ slower than before. If the total time of travel is 1 hour and 12 minutes, find his speeds.
17. A jet travels $80 \mathrm{~km} / \mathrm{hr}$ faster than a liner and takes 1 hour less than the liner to complete a journey of 6280 km . If the speed od the liner is $\mathrm{km} / \mathrm{hr}$, show that $x^{2}+80 x-502400=0$. Hence find the speed of the aircrafts to the nearest km/hr.
18. Andy and Annette walk to school. Andy walks at an average speed of $x \mathrm{~km} / \mathrm{hr}$; Annette walks at an average speed of $(x-1) \mathrm{km} / \mathrm{hr}$. If the distance is 10 km and Andy takes 20 minutes less than Annette, find their speeds.
19. Miami and Pittsburgh are 1000 miles apart. A plane flew into a $50-\mathrm{mph}$ headwind from Miami to Pittsburgh. On the return flight the $50-\mathrm{mph}$ wind became a tailwind. The plane was in the air a total of $4 \frac{1}{2}$ hours for the round trip. What would have been the plane's average speed without the wind?
